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Department of Chemistry, University of La Rioja, c/ Madre de Dios 51, 26006 Logroño (La Rioja), Spain

Received 7 April 2004; received in revised form 30 November 2004; accepted 14 August 2005
Abstract

A method for quality control of wine vinegar has been developed based on near-infrared spectroscopy that can be applied to monitor
processes or in quality control in vinegar industries. In vinegar production, stages such as on-line fermentation monitoring, dilution pro-
cess and quality control of the final product are relevant and necessary. The aim of this study was to achieve and simplify these man-
ufacturing stages through the determination of 14 parameters from a spectral measurement. Total acids, non-volatile and volatile acids,
organic acids, L-proline, solids, ash and chloride in vinegar were determined by near-infrared spectroscopy. Different data pre-processing
methods such as orthogonal signal correction, multiplicative scatter correction or column centering were used and the final multivariate
methods were evaluated and compared. The calibration models were validated and prediction capacity studied in order to examine their
practical applicability to the vinegar industry.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Food quality and safety has always been very important.
Ever since food became a trade object, there has always
been fraud, usually the wilful manipulation of a product
for financial gain, despite possible health risks to consum-
ers (Anklam & Battaglia, 2001). As a result of this constant
search for continuous assessment of food quality, many
methods based on near-infrared spectroscopy (NIRS) have
evolved rapidly over the past decade making NIR spectros-
copy an appropriate technique for food analysis (Blanco &
Villarroya, 2002; Xiccato, Trocino, Tulli, & Tibaldi, 2004).

One of the positive features of near-infrared spectros-
copy is that it is a non-destructive analytical technique, it
has the ability to record spectra of solid and liquid samples
with no prior manipulation (Xiccato et al., 2004), it is not
time-consuming and, in recent years, near-infrared spec-
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troscopy has gained wide acceptance in different fields
due to its advantages over other analytical techniques.
NIR spectroscopy used in connection with multivariate cal-
ibration techniques affords important industrial applica-
tions that are spreading rapidly (Büning-Pfaue, 2003;
Garrido-Varo, 1997; Larrechi & Callao, 2003; Shenk &
Westerhaus, 1995).

However, working with NIR data involves some knowl-
edge of the system and some of the parameters that affect
NIR measurements. The complexity of NIR spectra makes
direct interpretation impossible and prompts the need for
multivariate approaches in order to obtain all the chemical
information contained in the spectral variables. Moreover,
the existence of optical interferences such as light scatter in
NIR data always demands indirect multivariate calibra-
tion. Other parameters such as temperature or turbidity
should also be taken into account when calibrating a
NIR spectrophotometer. Multicollinearity in NIR data
creates lack or robustness and loss of accuracy problems
that, when added to those mentioned previously, makes
the calibration process a complex and delicate step that
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should be prepared and validated before being used in
everyday operations in the industry.

The dilution process is an important stage in vinegar
production. From the vinegar just fermented and until it
is bottled, the product undergoes a dilution process in or-
der to adjust the acetic grade to commercial specifications.
Spanish regulations establish that wine vinegars should
have a minimum total acidity of 60 g L�1 expressed as ace-
tic acid (Royal Decree 2070/1993 November 26th). Dilu-
tion is economically important to vinegar manufacturers
because an error in this stage of the process may cause
either an economic loss or a problem for the manufacturer
if the final product does not comply with legal
specifications.

Any kind of industrial process is complex due to its mul-
ticomponent nature. Thus, even with extensive automation,
controlling industrial processes is a very difficult task.
Industry is rapidly moving from post-line production con-
trol to on-line production control in order to avoid, or at
least reduce, non-conformities in the production process
and enable remote process monitoring (Coffey, Cooley, &
Walker, 1999). Models for monitoring dynamic processes
are usually constructed by withdrawing samples from the
system of interest and analysing them using reference meth-
ods; the results from the different analytes in such samples
and the spectral information obtained from them are used
for constructing calibration models. These were the
dynamics adopted to develop the analytical method de-
scribed here.

This study reports a rapid and safe method for perform-
ing final dilution stage in vinegar production. This is a gen-
eral objective within the new research trends included in the
PAT initiative (process analytical technology) aimed at
improving commercial products and cutting costs by con-
trolling production processes on-line in the manufacturing
process.

To achieve this goal, 14 chemico-physical parameters in
wine vinegar were determined by the Spanish official meth-
ods (AOAC, 1995, Chap. 43) or by other methods devel-
oped and validated in the laboratory (Sáiz-Abajo,
González-Sáiz & Pizarro, ACA 2005) to calibrate the
NIR instrument for simultaneous monitoring of all compo-
nents in the final product of a vinegar producer.

Some of these parameters are part of the analyses
encompassed within the technical regulations governing
the safety of food products applied in the vinegar industry
to test product quality, and others are important for assess-
ing the genuineness of the final product. Spanish legislation
(Royal Decree 2070/1993 November 26th) establishes cer-
tain levels for some of these physico-chemical parameters
for wine vinegar. The total acids content expressed as acetic
grade must be at least of 6� (60 g L�1), as stated above. Sol-
ids must have values larger than 1.30 g L�1 of vinegar and
per acetic grade. Ash content must be between 1 and
5 g L�1 and chloride concentration must be under 1 g L�1

expressed as sodium chloride. On the other hand, L-proline
and organic acids are indicative of the genuineness of wine
vinegar (Sáiz-Abajo, González-Sáiz & Pizarro, JAFC 2004)
and the levels of these compounds are significant for the
vinegar quality.

2. Materials and methods

2.1. Instrumentation and software

NIR spectra were collected for the 1100–2500 nm range
using a FOSS NIRSystem 5000 liquid analyser spectrome-
ter (Foss NIRSystems, Silver Spring, MD20904, USA)
equipped with a flow cell. The instrument was controlled
by a compatible PC using Vision 2.22 (Foss NIRSystems,
Silver Spring, MD20904, USA) for data acquisition.

For high-performance liquid chromatography measure-
ments, a modular apparatus comprising a complete HP
1100 Series System with a vacuum degasser, a quaternary
pump, an autosampler, a thermostatic column compart-
ment and a diode array detector were used. Separation
was performed on an analytical Zorbax SB-C18 (i.d.
4.6 · 250 mm with 5 lm particle size). Detection was per-
formed using a diode array detector. The detection wave-
length was set at 210 nm and the slit-width was set at 2 nm.

For regulatory analyses (Reglamento Técnico Sanitario-
Technical Health Regulations), an oven (P Selecta), a fur-
nace and a pH electrode (Crison, micropH 2002, Barcelona
Spain) and a Cl� Ion-selective electrode (Crison, Alella,
Barcelona, Spain) were used.

Chemometric analysis was performed using the follow-
ing software packages: Unscrambler v7.8, MATLAB 6.1
and V-PARVUS package (version 2003).

2.2. Reagents

For organic acids and L-proline analyses, L(+)-tartaric,
L(�)-malic, lactic, acetic, succinic, citric acid and L-proline
of analytical-reagent grade were supplied by Merck
(Darmstadt, Germany). For the preparation of the mobile
phase, potassium di-hydrogen phosphate of analytical-re-
agent grade from Panreac (Barcelona, Spain), methanol
of gradient grade and phosphoric acid 85% from Merck
were used. Water purified using a Milli-Q system académic
A10 (Millipore S.A., Molsheim, France) was used. Stan-
dard and calibration solutions of the compounds were pre-
pared in Milli-Q water. All the solutions were stored at
4 �C in the refrigerator.

For the regulatory analyses, sodium hydroxide from
Prolabo (Fontenay, France), hydrogene peroxide 33%
(110 vol) and sodium nitrate from Panreac (Barcelona,
Spain), phosphoric acid 85% from Merck, sodium chloride
from Sigma–Aldrich Co.(Gillingham, Dorset, UK) were
used.

2.3. Samples

Six genuine wine vinegar samples were taken directly
from different fermentors of a vinegar producer in order
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to join a representative amount of samples. The samples
were collected once the two-fold fermentation process
had concluded. Several dilute samples, simulating those
usually taken in the industry, were obtained in the labora-
tory to cover the whole range from the just fermented
product (about 115–120 g L�1 of total acidity expressed
as acetic acid) to the commercial product (60 g L�1 ex-
pressed as acetic acid). The range was also extended below
the lower limit to study and detect possible fraudulent dilu-
tions. The final amount of samples comprised 54 vinegar
samples. The experimental parameters and the ranges stud-
ied are shown in Table 1.

Apart from the samples used in the calibration and val-
idation processes, 10 commercial white wine vinegar sam-
ples collected from several supermarkets in northem
Spain were used to test a posteriori the ability of the models
performed to evaluate the different quality parameters of
the vinegar.
Table 1
Range of the experimental parameters

Parameter Unit Range

Total acids g of acetic acid in 100 mL vinegar 1.00–11.91
Non-volatile acids g of acetic acid in 100 mL vinegar 0.01–0.18
Volatile acids g of acetic acid in 100 mL vinegar 0.99–11.64
Chloride g L�1 of NaCl 0.177–0.533
Solids g L�1 1.30–17.56
Ash g L�1 0.16–2.08
L-proline g L�1 0.20–2.89
L(+)-tartaric acid g L�1 0.12–1.47
L(�)-malic acid g L�1 0.05–0.62
Lactic acid g L�1 0.25–0.91
Acetic acid g L�1 9.87–118.39
Citric acid g L�1 0.09–1.18
Succinic acid g L�1 0.24–0.80
D-malic acid g L�1 0.003–0.043

Fig. 1. Original NIR spectra
In order to avoid any optical interferences or scattering
effects in the NIR measurements that can affect the subse-
quent calibration process, all the samples were filtered
beforehand.

2.4. NIR spectra collection

The spectra were recorded at 43.0 ± 0.1 �C. The samples
were heated to this temperature before being introduced in
the NIRSystem to take NIR spectra. Each spectrum con-
sisted in an average of 32 scans at 2 nm intervals within
the wavelength range 1100–2500 nm. Four replicates of
each sample were taken and the mean value was calculated.
Fig. 1 shows the original NIR spectra of the samples col-
lected at different dilution stages. Changes in several parts
of the spectrum can provide information about the dilution
process.

The spectral data were taken from the Vision software
and treated using Unscrambler. Two segments of the spec-
trum were removed: the first, from 1880 to 2080 nm, due to
the saturation of the spectrum caused by the strong combi-
nation band of O–H from water (1950 nm); and the second,
from 2300 to 2500 nm, because of the low signal/noise ratio
value. The mean values were exported for further mathe-
matical pre-processing and calibration step.

2.5. Reference analyses

Regulatory analyses (total acids, volatile and non-vola-
tile acids, solids and ash content) were analysed in accor-
dance with the Official Methods of Analysis for vinegars
(AOAC, 1995, Chap. 43).

Chloride was determined by direct potentiometric deter-
mination with a Cl� ion-selective electrode as a practical
application of Nernst equation. It is based on the use of
of the vinegar samples.
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small quantities of both sample and standard and the gen-
eration of a standard curve by serial addition.

L-proline and organic acids were determined by HPLC
with DAD detector. All the standard solutions and vinegar
samples were passed through a 0.7 lm glass microfibre GF/
F supplied by Whatman (Whatman International Ltd.,
Maidstone, England) prior to injection into the HPLC
System.

The column used was Zorbax SB-C18 with a stable
bond packaging suitable for working at low pH values.
The operating temperature was 25 �C.

The mobile phase was 0.009 M potassium di-hydrogen
phosphate (adjusted to pH 2.06 with phosphoric acid)–
methanol (92:8 v/v) at a flow-rate of 0.64 mL min�1 at
25 �C and a working pressure of 90 bar (1 bar = 105 Pa).
Detection was performed by measuring UV absorption at
210 nm.

This chromatographic method was developed and opti-
mised in the laboratory using experimental design and
desirability functions as a multicriteria-decision-making
method for the separation, determination and quantifica-
tion of these compounds.

2.6. Chemometrics and data analysis

The matrix had 54 objects, 499 prediction variables
(near-infrared absorbance values) and 14 response vari-
ables. The initial set of 54 objects was divided into two sets:
the first was the training set used to construct the multivar-
iate models; and the second the external test set, used to
test the models and obtain RMSEP (root mean squared er-
ror in prediction) values expressing the prediction capacity
of the computed models. The objects assigned to the exter-
nal test set were randomly selected covering the experimen-
tal domain from the initial set of 54 samples and accounted
for 18.5% of the total number of samples.

Three pre-processing methods (centering, multiplicative
scattering correction (MSC) and orthogonal signal correc-
tion (OSC)) were applied to the data. MSC was used to
estimate the error produced by scatter effects in the samples
(Geladi, Macdougall, & Martens, 1985). OSC was applied
to avoid all the effects and interferences in the response that
presented zero correlation with the reference value y

(Blanco, Coello, Montoliu, & Romero, 2001; Svensson,
Kourti, & MacGregor, 2002; Wold, Antic, Lindgren, &
Öhman, 1998). In the present study, the original method
proposed by Wold (Wold et al., 1998) and implemented
in the osccal function of the PLS Matlab toolbox was used.

Recently, a number of theoretical approaches have ad-
dressed the selection of predictor strategies. This is neces-
sary when there are a large number of variables, often
highly correlated together with a moderate number of sam-
ples. SELECT was used as a predictor selection method.
SELECT is a V-Parvus program that generates a set of dec-
orrelated variables on the basis of their correlation
coefficients with a response y. SELECT searches for the
variable with the maximum correlation coefficient (correla-
tion weight) with a response variable. This variable is se-
lected and decorrelated from the other variables.
SELECT then searches among the other variables with
the maximum correlation coefficient until a specified num-
ber of variables are selected (Forina, Lantieri, Armanino,
& Cerrato-Oliveros, 2003).

Calibrations were developed using partial least squares
(PLS) (Næs, Isaksson, Fearn, & Davies, 2002, Chap. 5)
with external test set to estimate prediction error. The qual-
ity of the results provided in the calibrations was compared
using the root mean square error (RMSE) of the residuals
obtained with the PLS model, defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðyi � ŷiÞ
2

n

vuuut
; ð1Þ

where yi is the reference value, ŷi the calculated value and n

the total number of samples. The RMSE is expressed as a
percentage (in both calibration and prediction) taking into
account the response range in its calculation

RMSEð%Þ ¼ RMSE

ðyi;max � yi;minÞ
� 100. ð2Þ

RMSE is termed root mean square error in calibration
(RMSEC) for the calibration set and root mean square er-
ror in prediction (RMSEP) for the external prediction set.

Alternating conditional expectations (ACE) was used to
detect a possible non-linearity within the experimental
data. ACE is a non-linear regression method that can be
applied when the ratio between the number of objects
and the number of variables is very high (at least 10)
(Massart et al., 1997, Chap. 11).
3. Results and discussion

The calibration of the NIR instrument consists on find-
ing a relationship between the spectral variables and the
reference values, so that, the resulting mathematical equa-
tions can be used to predict the different compounds in fu-
ture new vinegar samples from their NIR measurements.

In a first step, partial least squares (PLS) regression was
used to establish several models to quantify the fourteen
components. The selected pre-processing methods were
used, evaluated and compared in order to eliminate scatter
effects and ensure that the spectra contained as little irrele-
vant information as possible.
3.1. Prediction of the physico-chemical parameters by partial

least squares regression

Calibrations for individual responses were performed
using three different pre-treatment combinations: center-
ing, MSC-centering and centering-OSC. The results are
shown in Table 2. These pre-processing methods were cho-
sen according to the type of data obtained. Multicollinear-
ity in NIR data should be taken into account, prompting



Table 2
Calibration and prediction errors for the 14 responses using different pre-processing methods and PLS

Pre-treatment Centering MSC-centering Centering-OSC

Compound RMSEC RMSEP RMSEC RMSEP RMSEC RMSEP

Total acids (�) 0.35(5) 0.58(5) 0.31(5) 0.55(5) 0.29(1.4) 0.54(1.4)

Non-volatile acids (�) 0.82(5) 1.14(5) 1.03(4) 1.05(4) 0.79(1.3) 1.15(1.3)

Volatile acids (�) 0.36(5) 0.64(5) 0.32(5) 0.60(5) 0.25(1.5) 0.59(1.5)

Chloride (NaCl, g L�1) 0.27(5) 0.36(5) 0.31(5) 0.35(5) 0.24(1.4) 0.35(1.4)
0.21(1.5) 0.27(1.5)

Solids (g L�1) 0.02(1) 0.01(1) 0.13(1) 0.12(1) 0.002(1.1) 0.004(1.1)

Ash (g L�1) 0.29(5) 0.43(5) 0.37(4) 0.54(4) 0.24(1.4) 0.43(1.4)
0.21(1.5) 0.39(1.5)

L-proline 4.18(5) 6.73(5) 4.46(4) 7.33(4) 3.54(1.4) 6.32(1.4)
L(+)-tartaric acid 0.03(1) 0.03(1) 0.13(1) 0.13(1) 0.01(1.1) 0.02(1.1)

L(�)-malic acid 0.05(1) 0.05(1) 0.13(1) 0.14(1) 0.02(1.1) 0.05(1.1)
0.02(1.2) 0.05(1.2)

Lactic acid 0.43(5) 0.66(5) 0.44(5) 0.65(5) 0.37(1.3) 0.60(1.3)

Acetic acid 0.52(5) 0.61(5) 0.52(5) 0.68(5) 0.46(1.4) 0.56(1.4)
0.40(2.2) 0.51(2.2)

Citric acid 0.03(1) 0.03(1) 0.13(1) 0.13(1) 0.02(1.1) 0.03(1.1)
0.03(1.3) 0.02(1.2)

Succinic acid 0.50(5) 0.71(5) 0.52(5) 0.68(5) 0.44(1.3) 0.63(1.3)

D-malic acid 0.02(1) 0.02(1) 0.13(1) 0.12(1) 0.004(1.1) 0.008(1.1)
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the need for data compression. The pre-processing methods
studied here are the most commonly used when working
with NIR data.

In Table 2, the RMSEC (%) and RMSEP (%) values are
shown together with a selected number of the optimal num-
ber of components used in the PLS model. In each case, the
selected components gave the minimal RMSEC and
RMSEP values. When there was no agreement, selection
was performed according to the minimal RMSEP value
in order to avoid overfitting problems. The same pattern
was followed for each of the three pre-treatment methods
and for each of the 14 responses. In the case of OSC pre-
treatment, the numbers in brackets represents the number
of OSC components and the number of latent variables
in the PLS model.

Comparisons in Table 2 are biased because there is no
agreement between the number of components considered
in each case. However, as indicated previously, this number
was selected from RMSEP optimal values and gave an idea
of the degree of goodness of the regression model.

The data in the table enable the following conclusions to
be drawn. The OSC pre-treatment method minimised the
RMSEP value in all cases except for L-proline. Only in
the case of L(�)-malic acid were the results with OSC
and column centering methods the same and significant
improvement was negligible.

The MSC-column centering procedure did not show any
significant improvement in the regressions. It may therefore
be concluded that the scatter effect is not the dominating
source of variability within the data matrix and MSC
pre-treatment could be removing some of the chemical
information contained in the data matrix. Thus, in this sys-
tem there is no need to include a scatter effect correction in
the data if the samples have been filtered prior to the NIR
measurement stage.

L-proline was the response with the highest number of
calibration and prediction errors and a new combination
of pre-treatment methods was tried in order to determine
whether noticeable improvements were obtained. First
derivative by Norris algorithm and column centering and
first derivative followed by OSC were performed prior to
PLS regression. However, in both cases calibration and
prediction errors were higher than the results achieved with
the previous pre-treatment strategies. Therefore, two alter-
native approaches were tested: a non-linear model to per-
form the calibration and a selection of predictors from
the spectral data.

3.2. Alternating conditional expectations

ACE was used to determine whether a non-linear
model was more appropriate to fit L-proline data. Differ-
ent SPAN values were tested between 0.1 and 1 (linear
model). ACE was performed over the first five principal
components computed out of the data matrix of 499
NIR variables to achieve the ratio number of samples-
number of predictors required by ACE algorithm. Table
3 shows the different RMSEC and RMSEP values (in



Table 3
Calibration and prediction errors for L-proline using ACE

SPAN RMSEC (%) RMSEP (%)

0.2 4.39 9.71
0.5 5.85 9.05
0.7 5.98 8.47
0.95 6.17 8.31

Table 5
Ranges of concentration of the different parameters in the commercial
vinegar samples

Parameter #PLS components Range

Total acids (�) 4 6.05–6.25
Non-volatile acids (�) 3 0.07–0.09
Volatile acids (�) 5 5.97–6.13
Chloride (g L�1 of NaCl) 5 0.31–0.34
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percentages) together with the SPAN value. The RMSEC
values increase as the model gets closer to a linear model
and the RMSEP values decrease as the SPAN value be-
comes larger. The results obtained showed that the
non-linear model was not suitable for describing the
behaviour of L-proline data. Moreover, ACE modelling
produces overfitting as the SPAN value decreases; the
calibration error decreases but, at the same time, the pre-
diction error increases sharply.

3.3. SELECT and PLS regression

SELECT was used to obtain a decorrelated matrix of
the predictor variables directly related to L-proline re-
sponse. SELECT was performed over the whole matrix
of the NIR variables using column centering as a pre-treat-
ment method and selecting a maximum of 20 predictors.
The program selected eight wavelengths from the total
number of 499 near-infrared absorbances collected: 1144,
1148, 1270, 1278, 1526, 1534, 1608 and 2112 nm, which
were supposedly related to L-proline values.

These selected bands correspond to the second overtone
bands of the bond C–H (1144–1148, 1270–1278 nm,
stretching mode), the first overtone of the bond O–H
(1526 nm, stretching mode) and the first overtone of the
bond N–H (1534 nm, stretching mode). The band
1608 nm, can correspond to the O–H stretching first over-
tone (intermolecular H-bond) and the last band (2112 nm)
corresponds to aminoacid compounds (N–H stretching and
C@O stretching) (Osborne, Fearn, & Hindle, 1993, Chap.
2).

PLS was performed over the eight predictors previ-
ously selected and once again performing column center-
ing as pre-processing method. The results with four and
five latent variables are shown in Table 4. This shows
how the results with SELECT followed by PLS regres-
sion with five latent variables gave the best result for
modelling L-proline response with a RMSEP (in percent-
age) of 4.81%.
Table 4
Calibration and prediction errors for L-proline using SELECT and PLS
regression

LVs RMSEC (%) RMSEP (%)

4 9.20 12.78
5 3.57 4.81
3.4. Evaluation of the quality of commercial vinegar samples

A direct application of the calibration models developed
before was done studying the prediction results for 10 new
commercial white wine vinegar samples. OSC with the
elimination of one orthogonal component was the pre-
treatment used in the development of the regression models
due to its ability to yield in general the best prediction re-
sults. From the values obtained it is possible to make some
observations about the quality of the wine vinegar
analysed.

All the samples fulfilled the specifications of the legal
regulations about total acidity ranging from 6.05 to
6.25�. Solids content per liter and acetic grade ranged from
1.42 to 1.48 g. Ash content was larger than 1 g L�1 in all
cases; chloride concentration was from 0.32 to 0.34 g L�1

expressed as sodium chloride and citric acid ranged from
0.58 to 0.61 g L�1. Table 5 shows the complexity of the
regression methods applied and the ranges of the parame-
ters obtained in the analysis of the commercial samples.
Regarding the organic acids, some of them are indicative
of the origin and genuineness of the vinegar. For instance,
values of tartaric acid between 0.45 and 1.15 g L�1 can be
considered normal (Sáiz-Abajo, González-Sáiz & Pizarro,
JAFC, 2004) and values under 0.45 g L�1 are indicative
of an extra dilution process. In the case of the vinegar sam-
ples studied, the concentration of tartaric acid ranged from
0.73 to 0.76 g L�1. The concentration of citric acid is below
the maximum legal limit and the rest of parameters are
within the normal ranges for wine vinegar.

It is important to note that the calibration developed
and validated in this study is applicable only to the quality
control and dilution process of white wine vinegar and it is
potentially extendable to red wine vinegar with the corre-
sponding validation process. When handling with vinegar
from other origins (i.e., cider vinegar, malt vinegar, balsa-
mic vinegar, Sherry vinegar), the calibration stage should
be performed with samples representing as best as possible
the future vinegar samples to be analysed.
Solids (g L�1 per acetic grade) 1 1.42–1.48
Ash (g L�1) 5 1.06–1.11
L-proline (g L�1) 4 1.02–1.63
L(+)-tartaric acid (g L�1) 1 0.73–0.76
L(�)-malic acid (g L�1) 1 0.31–0.32
Lactic acid (g L�1) 3 0.55–0.60
Acetic acid (g L�1) 4 56.46–60.71
Citric acid (g L�1) 2 0.58–0.61
Succinic acid (g L�1) 3 0.49–0.54
D-malic acid (g L�1) 1 0.021–0.022
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4. Conclusion

A method based on near-infrared spectroscopy has been
developed for determining 14 parameters that influence the
quality of wine vinegar.

OSC has proven to be the best pre-processing method
for the spectral data in the calibration stage and the
achieved prediction errors ranged from 0.008% for D-malic
acid to 1.15% for non-volatile acids. Only L-proline pre-
sented slightly greater prediction errors that were reduced
using SELECT as a predictor selection method.

This study demonstrates the suitability of NIR spec-
troscopy for monitoring different industrial processes
such as dilution and quality control of the final product
in the vinegar industry. NIR spectroscopy constitutes
an important tool for assuring the genuineness of the
products and for compliance with required national and
foreign market regulations, which is nowadays a hugely
competitive task.
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